彝良县龙安片区生活垃圾清运及填埋工程建设 项目渗滤液处理站水污染源在线监测系统 验收报告

企业名称(加盖公章): 彝良县住房和城乡建设局

运行单位: 彝良县住房和城乡建设局

排放口名称:渗滤液处理站总排口

监测点位名称: 总进水口、总排水口

委托验收单位(加盖公章): 云南润熙环保工程有限公司

目 录

表 1	基本情况	2
表 2	安装验收	11
表 3	仪器设备基本功能验收	14
表 4	监测方法及测量过程参数设置验收	16
表 5	比对监测验收	25
表 6	联网验收	26
表 7	运行与维护方案验收	28
表8	验收结论	29
表 9	验收组成员	30

附件目录:

附件1本项目设备出厂检验报告

附件 2 本项目仪器产品认证证书

附件3本项目在线监测设备产品合格证

附件 4 本项目进水口、出水口在线自动监测仪安装调试报告

附件 5 本项目联网测试报告

附件 6 本项目试运行报告

附件 7 本项目比对监测报告

附件8本项目进水口、出水口在线日常巡检记录

附件9 本项目环评批复

附件10 本项目

附图目录:

附图 1 本项目交通地理位置图

附图 2 本项目周边关系示意图

附图 3 本项目区域水系图

附图 4 本项目渗滤液处理站总平面布置图

附图 5 渗滤液处理站在生活垃圾填埋场项目区总平面布置中位置关系图

附图 6 本项目监测站房布局图

前言

彝良县龙安片区生活垃圾清运及填埋工程建设项目选址位于彝良县龙安镇晏家湾,中心坐标为东经104°10'4.39",北纬27°45'18.36"。2016年4月8日,项目取得了彝良县发展和改革局关于同意彝良县龙安片区生活垃圾清运及填埋工程建设项目开展前期工作的函(彝发改函〔2016〕2号),同意项目开展前期工作;2016年7月13日,项目取得彝良县住房和城乡建设局关于本项目初步设计的批复(批复文号:彝住建复〔2016〕7号);2016年2月,彝良县龙安镇人民政府完成了建设项目环境影响报告书报审工作;2016年9月7日,取得原昭通市环境保护局关于项目的环评批复(批复文号:昭环准评〔2016〕37号)。项目自建设完成后由彝良县住房和城乡建设局接管运行。

生活垃圾填埋场项目总占地面积5.67hm², 永久占地5.60hm², 临时用地0.07hm²。其中渗滤液处理站占地面积0.08hm², 渗滤液处理站处理规模50m³/d。生活垃圾填埋场项目服务范围: 彝良县龙安镇、角奎镇、洛泽河镇和小草坝镇; 渗滤液处理站处理来自生活垃圾填埋场运营期间产生的渗滤液、职工人员的生活污水和车辆清洗废水。项目环评总投资2622.16万元, 其中环保投资845.6万元, 占工程建设总投资32.25%; 项目实际总投资2622.16万元, 其中环保投资786.5万元, 占工程建设总投资30%。项目于2016年4月开工建设, 2017年7月建设完成。项目渗滤液处理站于2019年11月开工, 2020年2月竣工。

根据《中华人民共和国环境保护法》、《建设项目环境保护管理条例》(国务院第682号令)和《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)等有关规定,建设单位应当按照国务院环境保护行政主管部门规定的标准和程序,对配套建设的水污染源在线监测系统进行验收,编制验收报告。由此,彝良县龙安片区生活垃圾清运及填埋工程建设项目渗滤液处理站开展水污染源在线监测系统验收工作。

2023年4月30日,建设单位委托云南泰义检测技术有限公司对渗滤液处理站废水污染源自动监测设备进行比对监测,并出具监测报告。

在此基础上,2023年6月针对该企业水污染源在线监测系统的建设及运行情况、污染物排放达标情况,按照《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)的要求,编制完成了《彝良县龙安片区生活垃圾清运及填埋工程建设项目渗滤液处理站水污染源在线监测系统验收报告》。

(一) 企业简介

彝良县龙安片区生活垃圾清运及填埋工程建设项目选址位于彝良县龙安镇晏家湾,中心坐标为东经104°10'4.39",北纬27°45'18.36"。项目总占地面积5.67hm²,永久占地5.60hm²,临时用地0.07hm²。其中渗滤液处理站占地面积0.08hm²,渗滤液处理站处理规模50m³/d。本次验收的对象为项目渗滤液处理站。

渗滤液处理站主要建(构)筑物包括:调节池、污水预处理及二级DTRO处理用房、排污口等:辅助工程包括项目废水监测站等。

项目渗滤液处理站采用"调节池+预处理+二级DTRO+清水脱气及pH值调节"污水处理工艺,污泥直接运送至填埋场进行填埋处理。二级DTRO处理技术(碟管式反渗透技术),是专门用来处理高浓度污水的膜组件,其核心技术是碟管式膜片膜柱。膜片之间的通道为2mm,而卷式封装的膜组件只有0.2mm。液体在膜表面的流程仅7cm,而卷式封装的膜组件为100cm。同时,由于高压的作用,渗滤液打到导流盘上的凸点后形成高速湍流,这种湍流的冲刷下,膜表面不易沉降污染物。在卷式封装的膜组件中,网状支架会截留污染物,造成静水区从而带来膜片的污染。以上特点,决定了碟管式反渗透技术在处理渗滤液时可以容忍较高的悬浮物和SDI,意为不易堵塞。DT-RO的特殊结构及水力学设计使膜组易于清洗,避免了结垢和其他膜污染,从而延长了膜片寿命。

生活垃圾填埋场项目运营期间产生的渗滤液、职工人员的生活污水和车辆清洗废水全部进入渗滤液处理站进行处理,渗滤液处理站尾水水质达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中"表2现有和新建生活垃圾填埋场水污染物排放浓度限值"后排入大水沟河;项目大气污染物主要为渗滤液处理站运行期间产生的恶臭,其主要成分为H2S和NH3,呈无组织形式排放;经分析,项目恶臭及主要污染物浓度均能满足《恶臭污染物排放标准》(GB14554-93)表1中的二级标准标准排放限值要求;项目噪声主要为泵房、风机等设备,经采取措施后,项目厂界噪声均能满足《工业企业厂界环境噪声排放标准》(GB1348-2008)中2类标准;项目生活垃圾、污水处理站产生的底泥和滤渣,将通过小车集中运送至填埋区进行填埋;COD在线监测废液及废弃化学试剂包装材料属于危险废物,收集于危废暂存间后妥善处置。

渗滤液处理站用于收集和处理彝良县龙安片区垃圾填埋场运行过程中产生的生活污水、填埋场渗滤液和车辆清洗废水,渗滤液处理站尾水水质达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中"表2现有和新建生活垃圾填埋场水污染物排放浓度限值"后排

入大水沟河,后汇入横江。根据《云南省水功能区划(2014年修订)》,项目纳污河流属 "彝良仓盈—盐津滩头"河段,主要水功能开发利用较低,属于 II 类水体,外排尾水执行 排放执行《生活垃圾填埋场污染控制标准》(GB 16889-2008)表2标准,项目渗滤液处理 站进出水水质指标见表1。

表1 渗滤液处理站设计进出水指标

点位	指标	рН	CODer	TN	TP	NH ₃ -N
进水口	设计水质 (mg/L)	6~9(无量纲)	10000	500	30	400
出水口	最高允许排放标 准(mg/L)	6~9(无量纲)	100	40	3	25

(二) 生产工艺

渗滤液处理站采用"调节池+预处理+二级DTRO+清水脱气及pH值调节"污水处理工艺,产生的污泥直接运送至填埋场填埋。二级DTRO处理技术(碟管式反渗透技术),是专门用来处理高浓度污水的膜组件,其核心技术是碟管式膜片膜柱。膜片之间的通道为2mm,而卷式封装的膜组件只有0.2mm。液体在膜表面的流程仅7cm,而卷式封装的膜组件为100cm。同时,由于高压的作用,渗滤液打到导流盘上的凸点后形成高速湍流,这种湍流的冲刷下,膜表面不易沉降污染物。在卷式封装的膜组件中,网状支架会截留污染物,造成静水区从而带来膜片的污染。以上特点,决定了碟管式反渗透技术在处理渗滤液时可以容忍较高的悬浮物和SDI,意为不易堵塞。DT-RO的特殊结构及水力学设计使膜组易于清洗,避免了结垢和其他膜污染,从而延长了膜片寿命。

环评设计渗滤液处理站处理规模为50m³/d,实际修建的渗滤液处理站规模与环评设计一致。现状实际每日污水处理量为5m³,处理时间为8h/d。其具体流程:污水通过进水渠道流入装有调节池,随后污水经调节池沉淀、调节后,经篮式过滤器进行过滤后通过提升泵进入反渗透系统的原水罐,在原水罐中通过加酸,调节pH,原水罐的出水经原水泵加压后再进入石英砂过滤器,砂滤出水后进入芯式过滤器根据实际水质情况在芯式过滤器前加入一定量的阻垢剂防止硅垢及硫酸盐结垢现象的发生。经过芯式过滤器的渗滤液直接进入一级反渗透高压柱塞泵,通过一级反渗透装置处理后产生的一级浓水接入浓水罐,回灌于填埋区;其余污水进入二级反渗透装置进行处理后进入清水罐,在清水罐中进行pH回调,出水经脱气塔脱气处理,加微量的碱石灰即能使排水pH值达到排放要求。处理后的污水再通过树脂罐过滤后进入中水池,中水池中的尾水通过管道排放至大水沟河。渗滤液处理站近期不考虑安装除臭工艺。本项目渗滤液处理站工艺流程如图1。

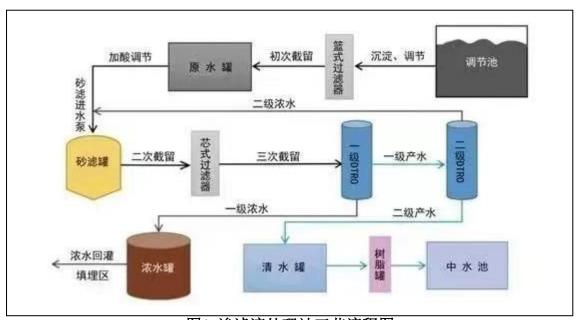


图1 渗滤液处理站工艺流程图

本工程产生的污泥,将通过小车直接运送至填埋场进行填埋处理。

本项目渗滤液处理站主要建(构)筑物详见表2、主要设备详见表3。

表2	项目主要建、	构筑物-	- 怡夫
7/-		インクセル	حالات الأراد

序号	名称	规格尺寸(m)	单位	数量	备注
1	调节池	5.00m×18.00m×4.00m	座	1	/
2	渗滤液收集池	27.00m×40.00×4.00m	座	1	/
3	规范化排放口	0.80m×0.80m×0.40m	座	1	/
4	清水池	2.30m×2.30m×4.00m	座	1	/
5	综合设备房	5.00m×8.00m×4.00m	座	1	/
6	值班室及储物间	5.00m×10.0m×4.00m	座	1	/

表3 建设项目主要设备一览表

		之人八日工人人出 龙人						
序号	设备名称	型号	单位	数量				
1	预过滤系统							
1.1	砂滤增压离心泵	ISW50-200IA	台	1				
1.2	砂滤器风机	KDT4.25	台	1				
1.3	砂滤器	QC-SYS400	台	1				
1.4	芯式过滤器	J2904-ROB60	台	3				
1.5	进水篮式过滤器	LFT-65L	台	1				
2	一级DTRO反渗透系统							
2.1	高压柱塞泵	CAT2537	台	1				
2.2	在线增压泵	BM17-13-NE	台	1				

2.3	碟管式膜柱	NEWAO750201	支	14				
2.4	清洗剂罐	V=200L 材质304	个	1				
3		二级DTRO反渗透系统						
3.1	高压柱塞泵	高压柱塞泵 CAT2537						
3.2	碟管式膜柱	BW30FR-400/34	支	4				
4		储罐及化学添加系统						
4.1	渗沥液原水提升泵	65WQ30-40-7.5	台	1				
4.2	加酸搅拌离心泵	CRN45-1	台	1				
4.3	清水输送离心泵	CRN45-2-2	台	1				
4.4	渗沥液原水储罐	V=2500L	个	1				
4.5	净水储罐+脱气塔	山东金正tgfp-7	台	1				
4.6	硫酸罐	V=2500L,材质Q235	个	1				
4.7	氢氧化钠储罐	V=200L,材质PE	个	1				
5		管路系统及支架		,				
5.1	高压电动球阀	ZH311027-EE62	个	2				
5.2	弹簧安全阀	G1 NPT3/4-G1	个	2				
5.3	弹簧安全阀	DHV712/DHV715/DHV716	个	3				
5.4	手动阀门	/	批	5				
6		电气及自控系统						
6.1	电气柜	工控机IPC610	个	2				
6.2	压力传感器	100BAR G1/2B	套	4				
6.3	压力开关	0.5-8BAR G1/2B	套	5				
6.4	压力表	2.5/10/100bar	个	16				
6.5	流量监测仪	FC220 明渠	套	4				
6.6	PH测定仪	WM-A100	套	4				
6.7	电导率测定仪	CLEAN CON500	套	6				

项目渗滤液处理站位于大水河沟北侧,由于项目渗滤液处理站至大水河沟仅有一条冲沟,常年干枯,有雨水期间才会有水流,故本项目渗滤液处理站至大水沟河之间接管道,项目处理达标后的污水经管道排放至大水沟河。

表1 基本情况

企业名	名称: 彝良县住房和城乡建	设局				行业类别: 》 其再生利用	
单位均	也址:云南省昭通市彝良县	角奎镇征	_{于政中心人}	社楼四楼		F • • • • • • • • • • • • • • • • • • •	
系统多	安装排放口及监测点位:						
	生产单位:北京九波声迪科技有限公司					规格型号: V	VL-1A2型
流	☑明渠流量计(出水)	标准堰	(槽) 类型	: 巴歇尔槽			
量计		生产厂》 规格型 ⁻					
	符合相关技术要求的证明:	/					
水质	生产单位:北京万维盈创和	斗技发展	有限公司		规格型	号: W51001	HB-III型
自动	采样方式:□时间等比例_		□流	量等比例	□济	元量跟踪	
采样 器	周期采样量:/						
拍聲	符合相关技术要求的证明:	/					
	监测参数	温度	pH 值	COD_{Cr}	NH ₃ -N	TP	TN
	生产单位	生产用位		上海博取仪 器有限公司		上海博取仪 器有限公司	
	规格型号	\	WM- D100型	CODG- 3000型	NHNG- 3010型	TPG- 3030型	TNG- 3020型
	仪器原理	玻璃电极法		重铬酸钾氧 化、分光光 度法	水杨酸分光 光度法	过硫酸钾氧化、钼酸铵分光光度法	过硫酸钾氧 化、盐酸间 苯二酚分光 光度法
	量程上限(mg/L)	\	14	1500	10	10	30
水质	量程下限(mg/L)	\	0	0	0.1	0.1	0
自	定量下限(mg/L)	\	\	\	\	\	\
动 分	反应时间(t)	\	\	\	\	\	\
析	反应温度℃)	\	\	\	\	\	\
仪	一次分析进样量(ml)	\	\	\	\	\	\
	一次分析废液量 (ml)	\	\	\	\	\	\
	安装调试完成时间	\	2023.3	2023.3	2023.3	2023.3	2023.3
	设备连续稳定试运行时间	\	30天	30天	30天	30天	30天
	设备运转率(%)	\	100	100	100	100	100
	数据传输率(%)	\	100	100	100	100	100
	是否出具了安装调试报告	\	\	是	是	是	是
	符合相关技术要求的证明	\	有	有	有	有	有

验收比对 监测单位及报告编号	\	云南泰义检测技术有限公司、TY〔2023〕-286				-286
是否与环保部门联网	\	是	是	是	是	是
是否有运行与维护方案	\	有	有	有	有	有
备注:	-					

本渗滤液处理站水质在线自动检测仪适用检测合格名录见下图:

图1-1 化学需氧量水质在线自动监测仪适用性检测合格名录

⚠ 网站首页

信息发布

◎ 技术支持

在线专题应用

氨氮水质在线自动监测仪适用性检测合格名录 (截至2020年12月31日)

🛨 🙎 📆 😰 🙏 🥦

发布时间: 2021-01-13

序号	单位名称	仪器名称型号	报告编号
1	维赛仪器 (北京) 有限公司	TresConUNO A111(TCU/A111)型氨氮水质自动监测 仪	质(认) 字 No. 2016-001
2	安徽皖仪科技股份有限公司	WS1503型氨氨水质在线自动监测仪	质(认) 字 No. 2016-002

			No. 2019-004
79	桂林云璟科技有限公司	YJ-NH3N-II型氨氮水质分析仪	质(认)字 No. 2019-005
80	桂林云璟科技有限公司	YJ-NH3N-I型氨氮水质分析仪	质(认)字 No. 2019-006
81	江苏德林环保技术有限公司	DL2003型NH3-N 自动在线分析仪	质(认)字 No. 2019-007
82	苏州聚阳环保科技股份有限公司	NH3N-1040型氨氮在线分析仪	质(认)字 No. 2019-008
83	吉林市光大分析技术有限责任公司	GD1511NH型氨氮在线分析仪	质(认)字 No. 2019-009
84	成都海兰天澄科技股份有限公司	HLT-200型氨氮在线自动监测仪	质(认)字 No. 2019-010
85	山东东润仪表科技股份有限公司	AND-2000型在线氨氮分析仪	质(认)字 No. 2019-073
86	上海博取仪器有限公司	NHNG-3010型氨氮在线自动监测仪	质(认)字 No. 2019-074
87	捷意贸易(上海)有限公司	Micromac C型水质在线分析仪(氨氮)	质(认)字 No. 2019-075
88	重庆耐德自动化技术有限公司	NIPm-3000-NH3N型氨氮测定仪	质(认)字 No. 2019-076
89	河北佛平环境科特省限公司	W1021 型氯氯水质在线分析仪	质(认)字

图1-2 氨氮水质在线自动监测仪适用性检测合格名录

总氮水质在线自动监测仪适用性检测合格名录 (截至2020年12月31日)

🛨 🕱 😽 👂 人 🤏

发布时间: 2021-01-13

序号	单位名称	仪器名称型号	报告编号
1	宇星科技发展(深圳)有限公司	YX-TNP型水质在线自动监测仪(总氮)	质(认)字No.2017- 050
2	深圳市朝石科学仪器有限公司	PhotoTek 6000型总氮水质自动在线监测仪	质(认)字No.2017- 051

	56	恒天益科技(深圳)有限公司	HTY-TN型总氮水质在线自动监测仪	质(认)字No.2019- 055
	57	吉林市光大分析技术有限责任公司	GD1211TN型总氮在线分析仪	质(认)字No.2019- 056
	58	堀场(中国)贸易有限公司	TPNA-500型总磷总氮水质在线自动分析仪(TN)	质(认)字No.2019- 057
	59	天津同阳科技发展有限公司	TY-IN型总氮水质在线自动监测仪	质(认)字No.2019- 063
	60	武汉境辉环保科技有限公司	JH-910型总氮在线水质分析仪	质(认)字No.2019- 103
	61	安徽蓝盾光电子股份有限公司	LGS-204型总氮水质在线自动监测仪	质(认)字No.2019- 105
<	62	上海博取仪器有限公司	TNG-3020型总氮在线自动分析仪	质(认)字No.2019 106
	63	石家庄瑞澳科技有限公司	RO-31型总氮水质在线自动监测仪	质(认)字No.2019- 127
	64	江西怡杉环保股份有限公司	YSM-TN型总氮自动检测仪	质(认)字No.2019- 128
	65	杭州启绿科技有限公司	WQA-3100TPN型水质(总氮)自动分析仪	质(认)字No.2019- 137
	66	南京捷发科技有限公司	Johnsir184型总氮水质在线分析仪	质(认)字No.2019-

图1-3 总氮水质在线自动监测仪适用性检测合格名录

总磷水质在线自动监测仪适用性检测合格名录 (截至2020年12月31日)

🛨 🙎 😽 😰 🙏 🥦

发布时间: 2021-01-13

序 号	单位名称	仪器名称型号	报告编号
1	安徽皖仪科技股份有限公司	WS1504型总磷水质在线自动监测仪	质(认)字 No.2016-014
2	河北华厚天成环保技术有限公司	TP型总磷在线分析仪	质(认)字 No.2016-015
3	岛津企业管理(中国)有限公司	TNP-4200型总磷在线监测仪	质(认)字 No.2016-016
88	贵阳学通仪器仪表有限公司	XT-IV型总磷水质在线分析仪	质(认)字No.2019-117
89	杭州英锐环保科技有限公司	TP-1800型总磷水质在线自动分析仪	质(认)字No.2019-118
90	南京鸿光环保科技有限公司	HG TP 2015型总磷水质在线自动监测 仪	质(认)字No.2019-119
91	苏州源泓环保科技有限公司	SY-1068型总磷水质在线检测仪	质(认)字No.2019-120
92	福州普贝斯智能科技有限公司	PCM300-TP型总磷水质在线自动监测 仪	质(认)字No.2019-121
93	上海博取仪器有限公司	TPG-3030型总磷在线自动分析仪	质(认)字No.2019-122
94	杭州绿洁水务科技股份有限公司	GR-3100型在线总磷监测仪	质(认)字No.2019-123
95	江苏蓝创智能科技股份有限公司	LC-TP01型总磷水质在线自动监测仪	质(认)字No.2019-124
96	南京新锐鹏仪表科技有限公司	XRP TP 2016型总磷在线自动监测仪	质(认)字No.2019-125
97	安徽蓝盾光电子股份有限公司	LGS-203型总磷水质在线自动监测仪	质(认)字No.2019-126
98	哈希水质分析仪器(上海)有限公 司	NPW-160H型总磷水质在线分析仪	质(认)字No.2019-132
99	马鞍山市桓泰环保设备有限公司	HT-TP-I型总磷在线水质分析仪	质(认)字No.2020-022
100	江苏尚维斯环境科技有限公司	SWS-TP-1001型总磷水质在线监测仪	质(认)字No.2020-023
101	江苏中信弘业科技有限公司	QWM3000型总磷水质在线自动监测 仪	质(认)字No.2020-024
	10 mm and 10 mm 11 mm 11 mm	Top Vision型总磷水质在线自动监测	er 2313 Aug 222222

图1-4 总磷水质在线自动监测仪适用性检测合格名录

表2 安装验收

系统名称	验收项目或验收内容	是否符合	验收人签字
	污染源排放口的布设符合 HJ 91.1 要求		
	污染源排放口具有符合 GB/T 15562.1 要求的环境保护图形标志牌		
	污染源排放口设置了具备便于水质自动采样单元和流量监测单元安 装条件的采样口		
	污染源排放口设置了人工采样口		
非放口、流	建设三角堰、矩形堰、巴歇尔槽等计量堰(槽)的,能提供计量堰 (槽) 的计量检定证书,三角堰和矩形堰后端设置有清淤工作平台, 可方便实现对堰槽后端堆积物的清理		
	流量计安装处设置有对超声波探头检修和比对的工作平台,可方便 实现对流量计的检修和比对工作		
	工作平台的所有敞开边缘设置有防护栏杆,采水口临空、临高的部 位应设置防护栏杆和钢平台,各平台边缘具有防止杂物落入采水口 的装置		
	维护和采样平台的安装施工全部符合要求		
	防护栏杆的安装全部符合要求		
	监测站房专室专用		
	监测站房密闭,安装有冷暖空调和排风扇,室内温度能保持在(20 ±5)℃,湿度应≤80%,空调具有来电自启动功能		
	新建监测站房面积不小于 15m ² ,站房高度不低于 2.8 m,各仪器设备安放合理,可方便进行维护维修		
	监测站房与采样点的距离不大于 50 m		
	监测站房的基础荷载强度、地面标高均符合要求		
	监测站房内有安全合格的配电设备,提供的电力负荷不小于 5 kW, 配置有稳压电源		
皿1/512/17	监测站房电源引入线使用照明电源;电源进线有浪涌保护器;电源 有明显标志;接地线牢固并有明显标志		
	监测站房电源设有总开关,每台仪器设有独立控制开关		
	监测站房内有合格的给、排水设施,能使用自来水清洗仪器及有关 装置		
	监测站房有完善规范的接地装置和避雷措施、防盗、防止人为破坏 以及消防设施		
	监测站房不位于通讯盲区		
	监测站房内、采样口等区域有视频监控		
采样单元	实现采集瞬时水样和混合水样,混匀及暂存水样,自动润洗及排空 混匀桶的功能		
	实现了混合水样和瞬时水样的留样功能		

	实现了 pH 水质自动分析仪、温度计原位测量或测量瞬时水样	
	实现 COD _{Cr} 、TOC、NH ₃ -N、TP、TN 水质自动分析仪测量混合水样	
	具备必要的防冻或防腐设施	
	设置有混合水样的人工比对采样口	
	水质自动采样单元的管路为明管,并标注有水流方向	
	管材采用优质的聚氯乙烯(PVC)PVC、三丙聚丙烯(PPR)等不影响分析结果的硬管	
	采样口设在流量监测系统标准化计量堰(槽)取水口头部的流路中央,采水口朝向与水流的方向一致,测量合流排水时,在合流后充分混合的场所采水	
	采样泵选择合理,安装位置便于泵的维护	
	数据控制单元可协调统一运行水污染源在线监测系统,采集、储 存、显示监测数据及运行日志,向监控中心平台上传污染源监测数 据	
	可接收监控中心平台命令,实现了对水污染源在线监测系统的控制。如触发水质自动采样单元采样,水污染源在线监测仪器进行测量、标液核查、校准等操作	
数据	可读取并显示各水污染源在线监测仪器的实时测量数据	
控制单元	可查询并显示: pH 值的小时变化范围、日变化范围,流量的小时累积流量、日累积流量,温度的小时均值、日均值, COD _{Cr} 、NH ₃ -N、TP、TN的小时值、日均值,并通过数据采集传输仪上传至监控中心平台	
	上传的污染源监测数据带有时间和数据状态标识,符合 HJ 355-2019中6.2 条款	
	可生成、显示各水污染源在线监测仪器监测数据的日统计表、月统计表、年统计表	
安装	全部安装均符合要求	
调试 检测报告	各项指标全部合格,并出具检测期间日报和月报	
备注:		

安装调试报告主要结论:

项目渗滤液处理站编制了自动监测系统调试及试运行报告。报告显示:调试及试运行期间,各在线监测仪各项性能指标(包括量程校正液误差、备零点漂移、量程漂移、重复性)均符合《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)及《水污染源在线监测系统(COD_{Cr}、NH₃-N等)安装技术规范》(HJ353-2019)的要求,备能正常进入试运行。

安装验收结论:

项目渗滤液处理站编制了自动监测系统调试及试运行报告。报告显示: 进口和出口水

范》(HJ354-2019)及《水污染源在线监测系统(COD _{cr} 、NH ₃ -N等)安装技术规范》(HJ353-2019)的相关要求,可以投入正常运行。
(HJ353-2019)的相关要求,可以投入正常运行。

表3 仪器设备基本功能验收

项目	验收项目及验收内容	是否符合	验收人 签字
基本功能	应能够设置三级系统登录密码及相应的操作权限		
	应具有接收远程控制网的外部触发命令、启动分析等操作的功能		
	具有时间设定、校对、显示功能		
	具有自动零点校准功能和量程校准功能及自动记录功能。校准记录中应 包括校准时间、校准浓度、校准前的校准关系式(曲线)、校准后的校准 关系式(曲线)		
	应具有测试测量数据类别标识、显示、存储和输出功能		
	应具有限值报警和报警信号输出功能		
	应具有故障报警、显示和诊断功能,并具有自动保护功能,并且能够将 故障报警信号输出到远程控制网		
	具有分钟数据、小时数据和日数据统计分析上传功能		
	意外断电且再度上电时,应能自动排出系统内残存的试样、试剂等,并自动清洗,自动复位到重新开始测定的状态		
应用要求	自动分析仪器相关软件需有清晰的、带软件版本号或者其他特征性的标识。标识可以含有多个部分,但须有一部分专用于法制目的;标识和软件本身是紧密关联的,在启动或在操作时应在显示设备上显示出来;如果一个组件没有显示设备,标识将通过通讯端口传送到另外组件上显示出来 (

14

安装调试报告主要结论:

项目渗滤液处理站编制了自动监测系统调试及试运行报告。报告显示:调试及试运行期间,各在线监测仪各项性能指标(包括量程校正液误差、备零点漂移、量程漂移、重复性)均符合《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)及《水污染源在线监测系统(COD_{Cr}、NH₃-N等)安装技术规范》(HJ353-2019)的要求,设备能进入试运行。

安装验收结论:

项目渗滤液处理站编制了自动监测系统调试及试运行报告。报告显示:进口和出口水污染源在线监测设备安装符合《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)及《水污染源在线监测系统(COD_{Cr}、NH₃-N等)安装技术规范》(HJ353-2019)的要求,可以投入正常运行。

表4 监测方法及测量过程参数设置验收

	监测项目	C	OD		
仪	器规格型号	CODO	5-3000型		
		在强酸性溶液中,准确加入过	量的重铬酸钾标准溶液,加热回		
	测量原理	流,将水样中的还原性物质(主	三要是有机物)氧化,过量的重铬	验收人签字	
	次至		流酸亚铁铵标准溶液回滴。根据所	3m1X/\m_1	田江
		消耗的重铬酸钾溶液量算出水样	生中还原性物质消耗氧的量。		
	测量方法	重铬酸钾氧	化-分光光度法		
		参数名称	验收时设定值		
		排放标准限值	100mg/L		
		检出限	5mg/L		
	固定参数	测定下限	0.001mg/L		
		测定上限	15000mg/L		
		测量周期 (min)	55min		
		浓度(mg/L)	75mg/L		
	试样用量参数	前次试样排空时间(s)	120		
		蠕动泵试样测试前	120		
		排空时间(s)	120		
		蠕动泵试样测试后	120		
测量		排空时间(s)	120		
		蠕动泵管管径(mm)	2.5		
参数		蠕动泵进样时间(s)	120s		
> X		注射泵单次体积(ml)	非注射原理		
		注射泵次数(次)	非注射原理		
		泵管管径 (mm)	非注射原理		
		试剂测试前排空时间(s)	120s		
		试剂测试后排空时间(s)	120s		
		进样时间(s)	300s		
	试剂	浓度(mg/L)	按厂商试剂配方而定		
		单次体积 (ml)	1ml		
		次数(次)	1		
		试剂浓度(mol/L)	0.1mol/L		
		配制方法	按说明书要求配置		
	试样稀释方法	稀释方式			

	稀释倍数		
	消解温度 (℃)	165	
消解条件	消解时间 (min)	15	
-	消解压力(kPa)	1500	
冷却条件	冷却温度 (℃)	50	
存如余件 -	冷却时间 (min)	3	
日名夕孙	显色温度(℃)	165	
显色条件	显色时间 (min)	15	
	光度计波长 (nm)	610	
	光度计零点信号值	0mg/L; 4185左右 随标准液而变	
	光度计量程信号值	75mg/L 3623左右 随标准液而变	
	滴定溶液浓度		
测定单元	空白滴定溶液体积		
	测试滴定溶液体积		
	滴定终点判定方式		
	电极响应时间(s)		
-	电极测量时间(s)		
	电极信号		
	零点校准液浓度(mg/L)	蒸馏水	
校准液	零点校准液配制方法	按说明书要求配置	
仅在机	量程校准液浓度(mg/L)	75mg/L	
	量程校准液配制方法	说明书	
报警限值	报警上限	现场设定	
1以言7以祖	报警下限	0	
	零点校准液 (x0) 对应测量信号数值 (y0)	0mg/L 4185左右	
校准曲线y= bx+a	量程校准液(xi) 对应测量信号数值(yi)	75mg/L 3623左右	
	校准公式曲线斜率数值b	1	
	校准公式曲线截距数值a	现场标定	
	堰槽型号	巴歇尔槽	
明渠流量计	测量量程	现场选择	
	流量公式	现场选择	
电磁流量计			

		测量量程	现场选择		
		模拟输出量程	现场选择		
	监测项目	23	氢氮		
仪	器规格型号	NHN	G-3010		
	测量原理	在亚硝基铁氰化钠存在下,氨 酸盐生成蓝色化合物,其色度与	氮在碱性溶液中与水杨酸盐-次氯 5氨氮含量成正比。	验收人签字	备注
	测量方法	水杨酸分			
		参数名称	验收时设定值		
		排放标准限值	25mg/L		
		检出限	0.01mg/L		
	固定参数	测定下限	0.001mg/L		
		测定上限	300.mg/L		
		测量周期(min)	30min		
		浓度(mg/L)	5mg/L		
		前次试样排空时间(s)	120		
		蠕动泵试样测试前 排空时间(s)	120		
		蠕动泵试样测试后 排空时间(s)	120		
		蠕动泵管管径(mm)	2.5		
测量		蠕动泵进样时间(s)	120		
过程		注射泵单次体积(ml)			
参数		注射泵次数 (次)			
		泵管管径(mm)	非注射原理		
		试剂测试前排空时间(s)	120		
		试剂测试后排空时间(s)	120		
		进样时间(s)	300		
	试剂	浓度(mg/L)	按厂商试剂配方而定		
		单次体积 (ml)	1ml		
		次数 (次)	1		
		试剂浓度(mol/L)	0.1mol/L		
		配制方法	按说明书要求配置		
	试样稀释方法	稀释方式			
	似作你作儿伍	稀释倍数			
	消解条件	消解温度 (℃)	55		

т	· · · · · · · · · · · · · · · · · · ·		1	
	消解时间(min)	5		
	消解压力(kPa)	100		
冷却条件	冷却温度 (℃)	55°C		
14 44 本门	冷却时间(min)	300		
显色条件 -	显色温度(℃)	55°C		
业 口 末 什	显色时间(min)	5min		
	光度计波长 (nm)	660nm		
	光度计零点信号值	0mg/L 3815左右随标准液而变		
	光度计量程信号值	5mg/L 462左右随标准液而变		
-	滴定溶液浓度			
测定单元	空白滴定溶液体积			
	测试滴定溶液体积			
	滴定终点判定方式			
	电极响应时间(s)			
	电极测量时间(s)			
-	电极信号			
	零点校准液浓度(mg/L)	蒸馏水		
校准液	零点校准液配制方法	按说明书要求配置		
1又1任7汉	量程校准液浓度(mg/L)	5mg/L		
	量程校准液配制方法	说明书		
报警限值	报警上限	现场设定		
IX 言 PK 但 -	报警下限	0		
	零点校准液(x0) 对应测量信号数值(y0)	现场标定		
校准曲线y= bx+a	量程校准液(xi) 对应测量信号数值(yi)	现场标定		
	校准公式曲线斜率数值b	1		
	校准公式曲线截距数值a	0		
	堰槽型号	巴歇尔槽		
明渠流量计	测量量程	现场选择		
	流量公式	现场选择		
	测定范围	现场选择		
电磁流量计	测量量程	现场选择		
	模拟输出量程	现场选择	†	

监测项目		£	公 磷		
仪	器规格型号	TPG-	3030型		
	测量原理	在中性条件下用过硫酸钾(或硝酸一高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。		验收人签字	备注
	测量方法	过硫酸盐氧化-每	目酸铵分光光度法		
		参数名称	验收时设定值		
		排放标准限值	3mg/L		
		检出限	0.005mg/L		
	固定参数	测定下限	0.001mg/L		
		测定上限	500.mg/L		
		测量周期(min)	35min		
		浓度(mg/L)	5mg/L		
		前次试样排空时间(s)	120		
		蠕动泵试样测试前 排空时间(s)	120		
		蠕动泵试样测试后 排空时间(s)	120		
		蠕动泵管管径(mm)	2.5		
测量		蠕动泵进样时间(s)	120		
过程		注射泵单次体积(ml)			
参数		注射泵次数 (次)			
		泵管管径(mm)	非注射原理		
		试剂测试前排空时间(s)	120		
		试剂测试后排空时间(s)	120		
		进样时间 (s)	300		
	试剂	浓度 (mg/L)	按厂商试剂配方而定		
		单次体积 (ml)	1ml		
		次数 (次)	1		
		试剂浓度(mol/L)	0.1mol/L		
		配制方法	说明书		
	试样稀释方法	稀释方式			
	WY TIP/1十/J 1ム	稀释倍数			
	消解条件	消解温度 (℃)	110°C		

	消解时间(min)	5	
	消解压力(kPa)	500	
冷却条件	冷却温度 (℃)	50°C	
存如余件 -	冷却时间 (min)	以温度达到冷却温度止	
	显色温度 (℃)	50°C	
显色条件	显色时间(min)	3.5min	
	光度计波长 (nm)	700nm	
	光度计零点信号值	0mg/L 4281左右随标准液而变	
	光度计量程信号值	5mg/L 1002左右随标准液而变	
	滴定溶液浓度	——————————————————————————————————————	
测定单元	空白滴定溶液体积		
, 4 , 2 , , 2	测试滴定溶液体积		
-	滴定终点判定方式		
	电极响应时间(s)		
	电极测量时间(s)		
	电极信号		
	零点校准液浓度(mg/L)	蒸馏水	
拉 波流	零点校准液配制方法	说明书	
校准液	量程校准液浓度(mg/L)	5mg/L	
	量程校准液配制方法	说明书	
北 <i>敬</i> 阳 估	报警上限	现场设定	
报警限值	报警下限	0	
	零点校准液(x0) 对应测量信号数值(y0)	0mg/L 4281左右	
校准曲线y= bx+a	量程校准液(xi) 对应测量信号数值(yi)	5mg/L 1002左右	
	校准公式曲线斜率数值b	1	1
	校准公式曲线截距数值a	0	1
	堰槽型号	巴歇尔槽	
明渠流量计	测量量程	现场选择	1
	流量公式	现场选择	1
	测定范围	现场选择	
电磁流量计	测量量程	现场选择	
	模拟输出量程	现场选择	

	监测项目	£	总氮		
仪	器规格型号	TNG-3020			
	测量原理	在120~124℃的碱性介质条件下,用过硫酸钾做氧化剂,可将水样中的氨氮、亚硝酸盐氮和有机氮氧化为硝酸盐氮,利用硝酸根离子在紫外光区220nm处有特征吸收峰,测定水样的吸光度来定量测定硝酸盐氮的含量,进而计算总氮(按硝酸盐氮计)的吸光		验收人签字	备注
		度值及含量 过硫酸钾氧化-盐酸	间苯二酚分光光度法		
	,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	参数名称	验收时设定值		
		排放标准限值	40mg/L		
		检出限	0.1mg/L		
	固定参数	测定下限	0.001mg/L		
			500mg/L		
		测量周期(min)	45min		
		浓度(mg/L)	5mg/L		
		前次试样排空时间(s)	120		
		蠕动泵试样测试前 排空时间(s)	120		
		蠕动泵试样测试后 排空时间(s)	120		
测量		蠕动泵管管径(mm)	2.5		
过程		蠕动泵进样时间(s)	120		
参数		注射泵单次体积(ml)			
		注射泵次数(次)			
		泵管管径 (mm)	非注射原理		
		试剂测试前排空时间(s)	120		
		试剂测试后排空时间(s)	120		
		进样时间(s)	300		
	试剂	浓度 (mg/L)	按厂商试剂配方而定		
		单次体积 (ml)	1		
		次数 (次)	1		
		试剂浓度(mol/L)	0.1mol/L		
		配制方法	说明书		
	试样稀释方法	稀释方式			
	WI TH/T // 14	稀释倍数			

消解条件	消解温度 (℃)	125°C	
	消解时间(min)	8	
	消解压力(kPa)	1200	
	冷却温度 (℃)	50°C	
冷却条件	冷却时间 (min)	3	
	显色温度 (℃)	50	
显色条件	显色时间(min)	7	
	光度计波长 (nm)	365nm	
	光度计零点信号值	0mg/L 3810左右随标准液而变	
	光度计量程信号值	5mg/L 2217左右随标准液而变	
	滴定溶液浓度		
测定单元	空白滴定溶液体积	·——	
	测试滴定溶液体积		
	滴定终点判定方式		
	电极响应时间(s)		
	电极测量时间(s)		
	电极信号		
	零点校准液浓度(mg/L)	蒸馏水	
校准液	零点校准液配制方法	按说明书要求配置	
1又1庄7汉	量程校准液浓度(mg/L)	5mg/L	
	量程校准液配制方法	说明书	
报警限值	报警上限	现场设定	
1K E KK IEL	报警下限	0	
	零点校准液(x0) 对应测量信号数值(y0)	1	
校准曲线y= bx+a	量程校准液(xi) 对应测量信号数值(yi)	0	
υx τα	校准公式曲线斜率数值b	现场标定	
	校准公式曲线截距数值a	现场标定	
明渠流量计	堰槽型号	巴歇尔槽	
	测量量程	现场选择	-
	流量公式	现场选择	
电磁流量计	测量量程		+

		模拟输出量程	现场选择		
注:	依据比对监测	」 项目增减列项。			
测方	法及测量过程	星参数设置验收结论:			
项	目测量过程参	参数设置依据设备厂家提供数据	居为准, pH 值监测方法为电极	法、COD _{Cr} 监》	则方法为重铬酸
化-5	}光光度法、I	NH ₃ -N监测方法为水杨酸分光光	 上度法、TP监测方法为过硫酸盐	氧化-钼酸铵分	光光度法、TN
方法	为过硫酸钾氧	瓦化-盐酸间苯二酚分光光度法,	对照《水污染源在线监测系统	t (COD _{Cr} , NF	I ₃ -N等)验收技
范》	(HJ354-201	9),本次验收监测方法符合国	国家环境监测分析方法。结果流		9《水污染源在
测系	统(CODCr、	NH3-N 等)运行技术规范》、	HJ 356-2019《水污染源在线』	点测系统(COI	OCr、NH3-N 等
据有	`效性判别技术	· 、规范》的相关要求。			
*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

表5 比对监测验收

验收比对监测报告主要结论:

2023年4月30日,建设单位关于彝良县龙安片区生活垃圾清运及填埋工程建设项目渗滤液处理站委托云南泰义检测技术有限公司对废水污染源自动监测设备进行对比监测,并出具检测报告(报告编号为: TY〔2023〕-286,详见附件7)。对照《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019),比对监测方法符合国家环境监测分析方法。

经检测结果可知,渗滤液处理站进、出口的pH、COD_{Cr}、氨氮、总磷、总氮的实际水样测定和质控水样测定的测定值、相对误差、绝对误差均符合《水污染源在线监测系统(COD_{Cr}、NH₃-N等)验收技术规范》(HJ354-2019)、《水污染源在线监测系统(COD_{Cr}、NH₃-N等)运行技术规范》(HJ355-2019)及《水污染源在线监测系统(COD_{Cr}、NH₃-N等)数据有效性判别技术规范》(HJ356-2019)的要求,比对监测合格。

表6 联网验收

联网证明主要内容:

彝良县龙安片区生活垃圾清运及填埋工程建设项目渗滤液处理站总进口、总排水口自动监控于2023年5月3日至2023年6月2日共计一个月的数据传输联网进行测试分析,主要指标为COD_{Cr}、氨氮、总磷、总氮、pH、水温、废水流量,并形成《联网验收测试报告》。结果如下:由云南省重点污染源自动监控中心出具《联网验收测试报告》

联网测 试指标	指标要求	联网测 试结果	备注
通信稳 定性	1、数釆仪在线率90%以上; 2、报文传输稳定性99%以上	通过	总排口: 应上传9300条, 实际 接受9300条, 传输率为100%
联网稳 定性	连续稳定运行一个月	通过	
数据传输安全性	1、对所传输的数据应按照 HJ212-2017中规定的加密方 法进行加密处理传输,保证 数据传输的安全性; 2、一端请求连接另一端应进 行身份验证	通过	
通信协 议正确 性	采用的通讯协议应完全符合 HJ212-2017的相关要求	通过	接受的实时数据、分钟数据、 小时数据、日数据原始数据包 符合HJ212-2017协议格式要求
数据传输正确性	系统稳定运行一个月后,任 取其中不少于连续7天的数据 进行检查,要求上位机接收 的数据和数采仪采集和存储 的数据完全一致;同时,检 查水污染源在线监测仪器显 亦的测定值、数采仪所采集 并存储的数据和上位机接受 的数据,实时数据应保持一 致	通过	企业数采仪的日数据与省监控 平台的日数据一致; 分析仪、数采仪、省监控平台 实时数据误差小于1%
现场故障模拟恢复试验	人为模拟断电、断水和断气 等故障,在恢复供电等外部 条件后,现场监测仪器能正 常自启动和远程控制启动, 数采仪能完整保存故障前的 完整分析的分析结果		设备验收时,需现场试验

根据项目《联网验收测试报告》,项目渗滤液处理站总进口、总排水口水质监测数据通过数据采集传输仪实时传输,数采仪通过有线传输方式向云南省重点污染

~~ 大块~~ 人 比	北西日本体服务亚人岛市联局	<u> </u>
源自动监控平台传输自动监控数据,	故项目仕线监控平台实现联网,	运行稳定。
I and the second		

表7 运行与维护方案验收

项目名称	项目内容	是否符合	验收人签字
水污染源在线监 测系统情况说明	排污单位基本情况		
	水污染在线监测系统构成图		
	水质自动采样单元流路图		
	数据控制单元构成图		
	水污染源在线监测仪器方法原理、选定量程、主要参数、所 用试剂		
	水污染在线监测系统各组成部分的维护要点及维护程序		
	流量计操作方法及运维手册		
	水质采样器操作方法及运维手册		
	COD _{cr} 水质自动分析仪/ TOC 水质自动分析仪操作方法及运维 手册		
	氨氮水质自动分析仪操作方法及运维手册		
运行与维护	总磷水质自动分析仪操作方法及运维手册		
作业指导书	总氮水质自动分析仪操作方法及运维手册		
	pH 水质自动分析仪操作方法及运维手册		
	温度计操作方法及运维手册		
	流量监测单元维护方法		
	水样自动采集单元维护方法		
	数据控制单元维护方法		
	日常巡检制度及巡检内容		
运行与维护制度	定期维护制度及定期维护内容		
	定期校验和校准制度及内容		
	易损、易耗品的定期检查和更换制度		
	每日巡检情况及处理结果的记录		
	每周巡检情况及处理结果的记录		
	每月巡检情况及处理结果的记录		
	标准物质或标准样品的购置使用记录		
	系统检修记录		
	故障及排除故障记录		
	断电、停运、更换设备记录		
	易损、易耗品更换记录		
	异常情况记录		
	零点和量程的校准记录		
	标准物质或标准样品的校准和验证记录		
备注			
	28		

表8 验收结论

验收结论:

根据建设单位于2023年4月30日委托云南泰义检测技术有限公司对废水污染源自动监测出具的检测对比监测报告(报告编号为: TY(2023)-286)、《联网测试报告》等相关技术资料和现场模拟断电故障恢复试验等情况,本次验收认为在线监测设备选型、工程设计、施工、安装调试、数据采集等符合国家标准要求: 监控指标、站房建设、排污口规范化等符合相关要求; 比对监数据达到验收标准要求; 在线监测仪器正常运行; 项目建立了水质在线监测系统运行管理办法、在线监测系统管理制度、水质在线监测系统管理人员岗位职责、废液处置制度、日常巡检制度、运营报告和报表制度、水质在线监测运行突发事件处理办法、水污染源自动监控数据异常备案流程、在线设备仪器维护、维修管理制度,符合验收要求, 具备验收条件,验收完成后可投入正常运行。

附表 验收组成员

序号	验收组职务	姓名	工作单位	职务/职称	签字